

Computing in Cardiology 2017 Rennes, France 24-27 September

Differential sensitivities of functionally calibrated populations of atrial cells to pro-arrhythmia markers in normal sinus rhythm versus chronic atrial fibrillation

Márcia Vagos^{1,2}, Hermenegild Arevalo¹, Bernardo de Oliveira¹, Joakim Sundnes^{1,2}, Molly Maleckar¹

¹ Simula Research Laboratory ² Department of Informatics, University of Oslo

Cardiac alternans are correlated to AF episodes in patients and could serve as a marker for arrhythmia

Cardiac alternans

Alternans precede AF

AP: action potential \rightarrow APD alternans CaT: calcium transient \rightarrow CaT alternans

Narayan et al., Circulation, 2011

APD restitution can be used to characterize APD alternans

PCL: pacing cycle length

The Koivumäki model of the human atrial cell showed APD alternans under dynamic pacing

- Spatial model with detailed calcium handling system
- Human ionic currents

Goal:

To use Populations of models and Sensitivity analysis to find which parameters of the Koivumäki model are causing the observed APD alternans behavior.

Populations of Normal and AF cells

Populations of Normal and AF cells

Distributions of *model* parameters

- Maximum conductance: ICaL, INa, IK1, ICab, IKr, IKs, IKur, Ito, INaL
- Maximum fluxes: INaK, INCX, ICaP

•

Ryanodine receptors: Maximum conductance Time constants

Higher intra-population variability

Populations of Normal and AF cells

Functional Calibration

Based on experimental data on human atrial cell by Sánchez et al (2014)

> APD90 APA RMP Upstroke velocity

Maximum and minimum APD in restitution curves

	SR		cAF	
	Minimum Value	Maximum Value	Minimum Value	Maximum Value
APD ₉₀ (ms)	190	440	140	330
APD ₅₀ (ms)	6	200	30	180
APD ₂₀ (ms)	1	60	1	75
APA (mV)	75	120	80	130
RMP (mV)	-85	-65	-85	-65
V ₂₀ (mV)	-35	10	-30	20
dV/dt _{max} (V/s)	40	420	40	420

Sánchez et al (2014)

Sensitivity analysis is useful for understanding the behaviour of a nonlinear system

How much do model

parameters influence resulting

EP properties?

AP

APD90-50-20 AP amplitude RMP dVdt max

CaT

CaT amplitude Diastolic [Ca²⁺]_i CaT time to peak CaT time of decay

APD restitution

Alternans threshold Alternans range Alternans area ΔAPD maximum

Input	Regression	output
parameters	coefficients	markers

 $\mathbf{X} \cdot \mathbf{B} = \mathbf{Y}$ (m x n) (n x k) (m x k)

We defined 4 different alternans markers

We defined 4 different alternans markers

Results

Sensitivities of AP and CaT markers of normal population were consistent with literature

APD restitution of Normal cells revealed greater propensity to APD alternans compared to the AF cells

Alternans markers in Normal population

Alternans markers in Normal population showed known parameter dependencies

Alternans markers in Normal population provided new insights into role of IKur, IK1 and INaK

AF population showed highest sensitivities of alternans markers to IK1, IKur, ICaL and INaK

Normal and AF populations showed different sensitivities of alternans markers

Conclusions and insights

Populations of Normal cells showed higher variability and propensity for APD alternans than the AF population

Normal and AF populations showed differences in the sensitivities of alternans to gCaL, gK1, gKur, and INaK conductance

Framework developed is a useful tool for studying mechanisms of cardiac alternans in single cells, and can be extended to tissue/organ simulations

This methodology can be applied to study other electrophysiology mechanisms related to arrhythmia

Thank you

simula

UiO : University of Oslo

Joakim Sundnes Hermenegild Arevalo Molly Maleckar Bernardo de Oliveira

Jussi Koivumäki