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The Koivumäki model of the human atrial cell showed APD 
alternans under dynamic pacing

● Spatial model with detailed 
calcium handling system

● Human ionic currents
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APD restitution can be used to characterize APD alternans
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APD alternans

PCL: pacing cycle length

APD: Action potential duration
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CaT

AP

Cardiac alternans

AP: action potential  → APD alternans

CaT: calcium transient → CaT alternans

Alternans precede AF

Narayan et al., Circulation, 2011

Cardiac alternans are correlated to AF episodes in patients 
and could serve as a marker for arrhythmia 
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Objective

Get insight into the cellular mechanisms causing the 

observed APD alternans behavior in the Koivumäki model.
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Populations of models 

Data

Insight 
into model

Large number of model instances 
that represent responses under 
different physiological conditions 

Sensitivity analysis

Explore the role of individual 
model parameters in the 
observed model behavior
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How did it start?

2009
SA on a randomized set of 
models by using multivariate 
linear regression

2010
Extension by inversing the 
regression matrix to uniquely 
restrain model parameters

2013 Calibration of populations 
with experimental values 
of markers

2014
Application of this 
methodology to populations 
of atrial cells
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Populations of models simulate different model outputs

Simultaneously varying selected model 
parameters, related to the behavior of 
interest, plus “dummy” parameters.

Ion channels/pumps (maximum 

conductances, and gating variables)

RyR2 (time constants of close/open states)

Ionic buffering
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Incorporate natural variability 
observed in experimental data



Data driven (eg, standard deviation)

Experimental values 

Parameters in population are calibrated by restricting biomarkers 
to within certain acceptable ranges

Metrics (Biomarkers)
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Muszkiewicz, A et al, 2014

Restrain the parameter space



Sensitivity analysis is useful for understanding the behaviour 
of a cell model

Parameters OutputsEP model 
(Nonlinear 
system)

?

Simpler model
Regression methods

Statistical learning methods (Genetic 
algorithm, bayesian methods)

How much do model parameters 

influence observed model behavior?
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B represents the amount of variability in Y that is explained by 

each of the parameters x when considered to be independent.

X → Model parameters

Y →Biomarkers

B → Regression coefficients (amount of variability 
in response explained by the parameter)

Multivariate Linear Regression method

(m x p) (p x k)(m x k)
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Action potential (AP) traces

Calcium transient (CaT) traces

Dynamic restitution curves

AP 
APD90-50-20
AP amplitude
RMP
dVdt max

CaT 
CaT amplitude
Diastolic [Ca2+]i
CaT time to peak
CaT time of decay

APD restitution
Alternans threshold 
Alternans range
Alternans area
ΔAPD maximum

Maximum conductance:

    ICaL, INa, IK1, ICab, IKr, IKs, IKur, Ito, INaL 

Maximum fluxes:

    INaK, INCX, ICaP

Ryanodine receptors:

    Maximum conductance, gating variables

Parameters (X)

Biomarkers (X)

Distributions of 
parameters

10 min (600 beats)

~10 sec
10 ms

Dynamic pacing protocol
1000 ms
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Alternans markers based on dynamic APD restitution
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Alternans area

Alternans range

ΔAPDmax

Alt-threshold

Alternans markers based on dynamic APD restitution

APD restitution
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Results
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Lower resting 
membrane potential

Triangulation

APD shortening

time (ms) time (ms)

gCaL 45% ↓

gK1 68% ↑

gNa 82% ↓

gKs 145% ↑

gKur 62%  ↓

gto 38% ↓

gKCa 50% ↓

RyR 100% ↑ 

Normal AF

Baseline of Normal and AF models
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Higher intra-population 
variability

n = 1000 n = 1000

time (ms) time (ms)

Normal AF

Populations of Normal and AF models
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Based on experimental data 
on human atrial cell  by 
Sánchez et al (2014)

      

Functional Calibration

n = 213 APD90 
APA 
RMP
Upstroke velocity

Maximum and minimum 
APD in restitution curves

n = 357

Sánchez et al (2014)

time (ms) time (ms)

Normal AF

Populations of Normal and AF models
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Sensitivities of AP and CaT markers of normal population were 
consistent with literature

APD90

ICaL

IK1

INa

IKur
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APD restitution of Normal cells revealed greater propensity to 
APD alternans compared to the AF cells 

Normal AF

56% alternans
slower pacing

18% alternans
faster pacing
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Alternans markers in Normal population 
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Alternans markers in Normal population showed known 
parameter dependencies
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Alternans markers in Normal population provided new 
insights into role of IKur, IK1 and INaK
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AF population showed highest sensitivities of alternans 
markers to IK1, IKur, ICaL and INaK

26



ICaL 45% ↓

IK1 68% ↑

IKur 62% ↓ 

Normal and AF populations showed different sensitivities of 
alternans markers

Normal AF
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Conclusions and insights

Populations of Normal cells showed higher variability and propensity for APD 

alternans than the AF population

Normal and AF populations showed differences in the sensitivities of alternans 

to gCaL, gK1, gKur, and INaK conductance 

Framework developed is a useful tool for studying mechanisms of cardiac 

alternans in single cells, and can be extended to tissue/organ simulations

This methodology can be applied to study other electrophysiology mechanisms 

related to arrhythmia
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Calculated B are sensitive to choice of parameters, since the coefficients 
represent the “relative” role of each parameter in explaining the variability in 
the observed response/biomarker

The simple regression model assumes no interactions between independent 
variables, which sometimes cannot be neglected. Use, eg, Partial Correlation. 

Method can be extended to include nonlinear and interaction terms, but a 
more complicated model is also harder to interpret.

Method is also sensitive to the calibration step, so this has to be done with a 
rationale keeping in mind the what are the model behaviors we want to study.

Limitations
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Incorporate variable interactions in the regression model, and reduce error by 
defining different a priori distributions of the parameters.

Perform mechanistic analysis of alternans, by analysis individual components 
of the calcium release system (eg, function of RyR and NCX).

Move to 2D simulations (populations of tissues), and try and find relationships 
between observed alternans behavior at the cellular and tissue level.

Incorporate the effect of ion channel blockade effect of drugs commonly used 
in the treatment of Atrial Fibrillation.

Derive an arrhythmia score based on cellular biomarkers that works as a 
surrogate of pro-arrhythmic risk.

Future work
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Thank you

Joakim Sundnes

Hermenegild Arevalo

Molly Maleckar

Bernardo de Oliveira

Jussi Koivumäki

31



32


