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Abstract—Gait is a complex sequence of neuromuscular events
that has a very important role on daily life. Injuries or diseases
can affect human motion and physicians still struggle to diagnose
gait disorders since the existent systems for gait analysis are func-
tionally limited. A novel gait analysis system, ProLimb, is then
suggested. This project encompasses a wearable and portable
system with textile based sensors, connected in a body area
network, providing an experimental solution for gait analysis,
extracting inertial and electromyographic integrated data on
the lower limbs. We built, tested and evaluated a functional
prototype. Textile electrodes have showed to be a solution with
potential for long-term gait monitoring. Further optimization of
the ProLimb system is also discussed.

Index Terms—Gait Analysis, Kinematics, Mesh Network
Topology, Body Area Network, Wearable Sensors, Textile Elec-
trodes, Electromiography, IMU;

I. INTRODUCTION

GAIT is the sequence of movements where the body trav-
els supported by leg motion. This process can be affected

by motor-sensory dysfunction, inadequate neuromuscular re-
sponses, musculoskeletal impairments or decreased cognition
(inability to anticipate or adapt to postural needs) [1]. Despite
the increasing number of conditions that affect gait movement,
where population aging is the major contributor along with
Parkinsons disease and stroke, physicians still struggle to
diagnose gait disorders by analyzing patient motion [2]. Gait
is a complex process and the existent systems for gait analysis
are still functionally limited, lacking practical approaches for
gait assessment without biasing results.

In this sense, gait analysis is a diagnosis method that
records human kinematics and dynamics during a certain
gait movement, providing quantitative data to analyze and
diagnose movement disorders [3]. When combined with elec-
tromyography (EMG) records, technologies for gait analy-
sis are appealing as diagnostic and inspection tools. Gait
analysis systems are commonly used by athletes and people
suffering from diseases or injuries conditioning gait. They
assess pathology or injurys severity, monitor patients progress
either in the presence or absence of an intervention, and predict
better treatments [3]

In gait analysis, clinicians are more interested in evaluating
a set of parameters than the raw data itself. For that reason,
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data processing tools should address the extraction and quan-
tification of gait parameters from inertial and surface EMG
signals Two classes of spatio-temporal features are commonly
extracted from data: kinetic and kinematic [4], [5]. Kinetic
variables include: mean gait velocity, stride length and width,
step length, step frequency-cadence (steps per minute),stance,
swing and double stance percentage with respect to stride
phase, maximal values of the hip and ankle joint moments
and powers (plantarflexion, extension and flexion moments).
The main kinematic variables are: range of amplitude of
each lower limb joint (hip, knee, ankle), calculated as the
difference between the minimum and maximum exion angles
in the whole stride and in the stance and swing phase, pelvic
orientation in the frontal plane.

In the presence of these values, gait normality is generally
assessed by comparing them into standard values. Elderly
people as well as patients suffering from movement disorders
derived from neurological diseases, such as Parkinson Disease
(PD), are often affected by motor disability with reduced range
of motion. It has been reported that PD patients present typical
walking pattern with reduced velocity, increased stance phase
and shorter stride length, with decreased amplitude of the
lower limb segment [4]. The analysis of the aforementioned
parameters allows not only the overall evaluation of gait
disability, but also the comparison of motor performance
of both body sides. The additional data from EMG further
improves these tasks, and it might be crucial to infer patient’s
conditions. For instance, kinematics records can be compared
to EMG plots to find out if join angular motion can explain
EMG or EMG can explain angular motion. Besides, EMG
signals are affected by the velocity of gait [6]. Considering the
case of PD as an example, EMG signals with lower amplitudes
would be associated with the lower gait’s velocity of these
patients. Although data bases about EMG and inertial sensors
patterns are limited, some standard values are already stated
and deviations from these are even associated with specific
diseases [7].

At the present time, gait analysis is commonly performed
in laboratory or physicians office. Manual observational in-
spection, image acquisition or sensor based data acquisition
systems for kinematics detection, force systems or pressure
mapping for dynamics measurement are used as well as
surface EMG (sEMG) for determining muscle activity. How-
ever, these systems can be expensive and in general they
are difficult to use. They are uncomfortable for the patient,
are time consuming and can require high levels of expertise.
These features hamper the use of gait analysis in several
rehabilitation areas. For instance, gait analysis has potential as
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a monitoring system during rehabilitation of injured athletes.
Their main goal is to recover full gait function in a short-time
and without increasing the risk of a relapse and gait analysis
could help by providing means to assess the real physical
condition and adjust treatments. Nevertheless, the lack of a
practical method to evaluate gait in a lab free environment is
the main obstacle to its use in the field of sport’s medicine.
Monitoring in sports is still based on medical manual and
visual observation, considerable follow up of training images
and athlete opinion related with pain. Based on that, gait
analysis systems and procedures should preferably include
real and continuous time monitoring, being inexpensive, easy-
to-use and widely available [8]. In addition, gait analyses
provided by current systems do not reflect motor function
under real-life conditions [8]. There is a need for a low cost
device that can provide quantitative and reproducible results,
as well as monitor gait over long periods of time. In particular,
gait analyses of patients with Parkinsons disease would be
greatly enhanced by studying gait outside of a limited motion
lab area [8], as for it happens for sportive follow up.

To address these problems, a novel gait analysis system,
ProLimb, is being developed. ProLimb is a comfortable,
wearable system for gait analysis and monitoring. The core
technology is an electronic instrument to capture objective data
on human motion combined with a textile support (stockings
or pantyhose) making the product practical and non-invasive.
The conjugation of these two components makes the infras-
tructure portable and allows performing the analysis in and
outside of a laboratory environment, for prolonged periods of
time, monitoring typical movement activities under everyday
living conditions. For this purpose, ProLimb comprises eight
sensor nodes (SN) disposed in a mesh topology, containing
accelerometers, gyroscopes and textile sEMG sensors for
capturing lower limbs kinematics (namely linear and angular
movement) and surface electromyographic signals, respec-
tively. Four SN are placed per leg, each one monitoring a
different target muscle, namely the Biceps Femoris, the Rectus
Femoris, the Tibialis anterior and the Gastrocnemius. The
acquired data is transmitted via wire to a central processing
module (CPM) attached to the patients belt. In the present
study, we were asked to test functional prototypes and actively
participate in the miniaturization of the SN, envisaging the
wearable and longterm analysis purposes of the ProLimb
system. Suggestions of alterations to the initial prototype
would also be welcomed.

II. METHODS

A. Functional prototype assembly and testing

To implement the described Body Area Network (BAN),
conductive yarn was used to put together the network of SN
and sEMG electrodes and connect it to the CPM [9], [10].
The conductive yarn is made of multifilament polyamide and
elastane fabric. This material is widely used in textile industry
for being very comfortable, easy to knit into cloth and for its
elastic properties. The yarn is coated with a thin silver layer to
render it conductive (with a mean mass resistance of roughly
4R/cm, higher than that of copper wire). Other possibilities

were available, namely silver covered pure polyamide or
polyester yarn, stainless steel covered yarn, or even pure stain-
less steel yarn. In this project only silver/polyamide/elastane
yarn was used. The yarn is embedded in the cloth, onto
the basic fabric, during the fabrication process in the Textile
Engineering Department of Minho University [11] and using a
technique to embody textile electrodes (TE), connections and
the reference electrode (RE) in the stockings. We are using a
LIR2450 Lithium Battery as power supply. In an initial stage,
the BAN of the prototype was implemented only on the right
leg with 4 SN with a data acquisition rate of 73,6 Kbits/s,
according to the following architecture (Figure 1):

Fig. 1. Connections and Nodes and connections

• 2 SN with inertial measurement unit (IMU) and sEMG
(4 + 4 signals) in the anterior upper and lower limb;

• 2 SN only with sEMG (2 + 2 signals) in the posterior
upper and lower limb.

Two different topologies for the Right-Leg Drive (RLD)
were considered:

• Connect all RE signals independently for the reference
electrode in the knee;

• Connect all RE signals in a single point, and link this
point to the RE.

The second topology was adopted since it is easier to
implement and also because it allows for noise coupling of
the signals and minimization of wiring length, resulting in
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possibly improved signal to noise ratio. A functional prototype
(Fig.2) has been prepared with the TE and circuit leads
stitched upon the leggings to test the optimal configuration
of the circuit, taking into account the minimization of lead
length and interferences. On the first version of this prototype,
conductive lines were weaved in separate pieces of cloth and
then manually knitted on the top of the stockings. This knitting
process is time-consuming and not practical. Sensor Nodes
were then mounted on the leggings using metal attaches which
simultaneously provide anchorage and electric contact. To fix
the attaches to the SN, two possibilities were considered:

• Gluing a patch of cloth to the backside of the SN board
and stitching attaches to this intermediate support. The
inputs and output on the top side of the SN would be
extended to the back and soldered to the attaches.

• Building new PCBs with attaches directly soldered onto
it, so that no intermediate support would be necessary.
This possibility would require that each SN had to be
unique with different correspondence between attaches
and connecters, since circuit configuration is also differ-
ent around each SN in the stockings. Nevertheless, this
was the selected option. A scheme of the connections
between the circuitry and attaches is shown in Figure 1

Two sets of preliminary tests were performed, and the
recorded signals were analyzed later with MatLab. Testing was
performed envisioning the comparison of the signals acquired
with both TE and conventional electrodes (CE). All the tests
were performed by a healthy young female with no history
of gait disturbances. Data was collected for both TE and CE
placed on the right leg of the volunteer, according to the
following segments:

• Segment a: Maximum voluntary contraction full contrac-
tion of leg muscles during 4 seconds, with the foot on
the ground and without movement;

• Segment b: Flexion in two steps knee flexion to the back
and knee extension;

• Segment c: Flexion in four steps hip and knee flexion
to the front, knee extension, knee flexion and return to
initial position;

• Segment d: Flexion in six steps continuous movement of
segment c followed by segment b;

• Segment e: Walking - Stand (5s), walk (12 steps) and
remain still (5s);

• Segment f : Running - Stand (5s); run (12 steps) and
remain still (5s).

An image of both CE and TE during the tests is presented on
figure 2 To ensure correspondence of signals and acquisition
in the same conditions, the two sets of signals (from CE and
TE) should have been measured simultaneously with both sets
of electrodes placed on the same muscles, but far enough
to guarantee that overlapping and signal interference would
not occur. For that purpose, additional holes near the TE
would have been necessary to allow the introduction of CE
beneath the stockings, and an extra set of acquisition and
SN modules were necessary. As the necessary extra material
was not available and the simultaneous usage of both sets
of electrodes presented great discomfort and constraint to the

Fig. 2. Conventional Electrodes (left) and textil electrodes (right) prototypes

volunteer, CE and TE data was obtained in different and thus
independent assays. This will limit signal comparison and
decrease the reliability of the conclusions that can be extracted
from these data.

B. Signal Analysis

The initial approach for the data analysis envisioned the
following processing steps: temporal alignment of the signals
coming from different SN, EMG signal processing including
signal rectification, low pass filtering and IMU signal process-
ing.

1) Processing: To identify locomotion patterns, the data
acquired with CE and TE was filtered to remove the offset
and noise. The offset was removed by an average filter, which
was applied in the EMG and inertial signals acquired with
CE and TE. In accordance with literature, EMG signals were
filtered for noise reduction with a bandpass filter, to remove the
baseline and very high frequency noise. Some authors employ
a low cutoff frequency for the band pass of 100Hz to remove
the 50Hz nearly ubiquitous noise, however this approach lead
to some signal loss. Although in the literature the authors
diverge in low cutoff frequency, the higher cutoff frequency
usually is near the 500Hz. For this work it was designed a
low-pass filter with cut-off of 500Hz, since the baseline was
already removed by the average filter and the removal of some
low frequencies could lead to some signal loss [12], [13]. In
addition, a root mean square filter (RMS) filter was applied in
EMG signals to obtain a better definition of peaks contraction.
This approach is normally used for this type of signals. To
reduce the noise in the inertial signals, a common low-pass
filtering approach was applied [14], [15]. Therefore, a low
pass filter was applied with a cutoff frequency of 200Hz.

2) Activity Profiles identification:
• One Sensor

For the identification of patterns present from one sensor in
a certain test, a signal alignment approach was performed.
Initially, the inertial signals were divided by their higher peak
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to normalize amplitude. The alignment was performed using
cross-correlation between acceleration and gyroscope signals,
and the alignment information was used for the following steps
of pattern identification. Afterwards, EMG signal was resam-
pled and aligned with the resulting information. Resample was
needed since the number of samples per minute in EMG was
considerably higher than the sampling frequency from inertial
sensors. The alignment was carried with the same approach
used for inertial signals and the amplitude normalization was
also need before this step.

3) Multiple signal alignment: Fruit of several delays of
unkown (albeit estimable) nature there is a desynchronism
present in the captured data. Let’s assume that the sampling
rates are dependeble upon, managing this the desynchronism is
of a purelly delay nature. There are timestamps in the samples
but even so the data doesn’t align all that well. Hence came
the necessity, for applications where classifiers of posture and
activity, or Inverse Kinematics might be employed, having all
the signals share a common time reference is of importance,
so the challenge of making multiple signals synchronous came
to light.

The available signals are as follows, accelerometers, gyro-
scopes, and Electromyographs. Let’s assume that Accelerom-
eters are aligned with their respective gyroscopes, (since they
originate in the same physical IMU module), but the IMU
bundle (accelerometers plus gyroscopes) is not aligned with
the EMG signal, even from the same module, and diffrent
modules are disaligned amongst themselves.

To establish a common time frame we took advantage of
the movements of the lower limb which most often affect
both articulate pieces. Modelling the lower limb as two rigid
bodies with an articulation, we have two sensor nodes in the
calf and two in the thigh.It can be assumed that some of the
movements which affect the calf will also affect the thigh,
which is to say, there will be plenty of “coincidences” in
the IMU signals between the lower and higher part of the
leg. Those coincidences will allow for us to align the upper
modules with the lower ones, since they are likelly to show
the best alignment when those parts which are indeed present
in both signals overlap in the alignment algorithm.

The alignment of two time varying signals can be performed
using by estimating the delay between the two which the max-
imum of the convolution between both. When such happens
it means the overlapping areas are at a maximum. In order to
maximize the performance of this method we apply a moving
average real time remover to remove the baseline and settle the
signal at 0, allowing us to overlapp the activity in the signal.
When performing this alignment between signals which aren’t
exactly equal, which in fact posesse each eigen clusters which
are not mutually occuring it is best to ignore the form, so the
entire signals are rectified and passed through a smoothing
kernel which is convoluted to yeald a low pass like function.
This chain of processing is typical for emg, but is used as
well in IMU for the sense of highlighting ’activity’ zones,
allowing for them to be aligned instead of focusing on peak
alignment to increase the roboustness of the method against
isolated signal artifacts.

Using apropriate pre-filtering and resampling the 50sps sig-

nals of the IMUs to the EMGs 1Ksps we can align the EMG
signals with the Inertial ones based on the assumption that
contraction originates movement, so regions of emg activity
will correspond to regions of movement.

When comparing multiple signals, such as in this case in
which there are four nodes, the problem gets more complicated
as there might (and very probbly will) be mismatches in the
global alignment. The problem rises when several routes of
alignment don’t yeld the same delays: comparing signals A, B,
and C which are not aligned but to whom we apply the Inter
Signal Alignment methods resulting in the identified delays
dA,B , dA,C, dB,C now if the estimated delays were perfect
we could say:

dA,C = dA,B + dB,C (1)

Note that these delays can be positive, meaning B is delayed
dA,B time in respect to A if positive, and vice versa if negative,
thus equation 1 is valid for all cases that the dalays are
perfectelly estimated. In all likelihood however it will happen
that dA,C 6= dA,B+dB,C , suppose B is delayed 40ms to A and
C 70ms to A, yet the algorithm finds C delayed 80ms instead
of 70ms when directly measuring the delay between B and C.
To answer these multiple paths through which delays might be
indirectly estimated we devised an aproach which takes into
account all measured delays and finds an optimal concordant
solution of delays, which takes into account the information
from all alignments to generate the global alignment and thus
the best delays for each of the signals.

Given signals s1, s2, ..., sN each composed of Li sam-
ples, s1 = [s1(0)s1(1)s1(2)...s1(L1)] and knowing that they
amongst themselves have estimatives delay ¯di,j which are zero
for the alignment of the signal against itself, we can construct
a global delay matrix:

D =


d1,1 d1,2 · · · d1,N
d2,1 d2,2 · · · d2,N

...
...

. . .
...

dN,1 dN, 2 · · · dN,N

 (2)

It is expected that the matrix shows negative symmetry,
meaning that d1,2 = −d2,1. In matrix D we have in each
line how one signal is directly aligned to each of the others,
and if we were to find the minimum at each rowand delayed
the signal by that value (for instance signal 1 has minimum
−4 in row 1 that means if we cut 4 samples , seconds, ms...
from the beggining of the signal he would be in the global
time frame).

We haven’t yet the information about the alternative paths.
If we want to second guess the estimative di,j we must look
at all paths that go from i to j without repeating values.

Consider N = 4, the available paths to form the connection
1, 2 are [(1, 2)] obviously, plus the connections by reference
to a intermediate signal : [(1, 3), (3, 2)], [(1, 4), (4, 2)] and to
all signals [(1, 3), (3, 4), (4, 2)], [(1, 4), (4, 3), (3, 2)] , consider
the matrix D.

D =


d1,1 d1,2 d1,3 d1,4
d2,1 d2,2 d2,3 d2,4
d3,1 d3,2 d3,3 d3,4
d4,1 d4,2 d4,3 d4,4

 (3)
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If we’re trying to create paths from 1 there is no interest
in including this column in because all it’s members end in
1, meaning they end at the the beggining of the route, so we
take that column out. Since we’re trying to get to 2 there is
no point in including row 2 because all of it’s members depart
from two, and after reaching 2 we needn’t go anywhere else.
So, from the remotion of this line and column we get the
matrix:

D1,2 =

d1,2 d1,3 d1,4
d3,2 d3,3 d3,4
d4,2 d4,3 d4,4

 (4)

And in this matrix we can find all the combinations which
result in a path from 1 to 2 , in other words the sequence
of delays which estimate the delay from 2 to 1. This can be
done by summing the diagonals and the secondary diagoonals
of the matrix:

d1,2 = d1, 2 + d3,3 + d4,4 (5)

d1,2 = d1, 3 + d3,4 + d4,2 (6)

d1,2 = d1, 4 + d4,3 + d3,2 (7)

d1,2 = d1, 4 + d3,3 + d4,2 (8)

d1,2 = d1, 3 + d3,2 + d4,4 (9)

If we remove the term di,i because it is equal to zero
(the delay between a signal and itself) we have all the
combinations earlier mentioned. By averaging all these values
we can produce an estimate of the alignment with all possible
alignments routes being accounted for. So when we produce
the matrix Di,j resultant of the supression of the row j and
column i and sum its diagonals and secondary diagonals and
average we can get the matrix:

DAvg =


|D1,1|? |D1,2|? · · · |D1,N |?
|D2,1|? |D2,2|? · · · |D2,N |?

...
...

. . .
...

|DN,1|? |DN,2|? · · · |DN,N |?

 (10)

And from the each line we may extract the actual delay
we have to apply to each signal to have everything properly
aligned with all alignments accounted for:

di = min(DAvg,i) (11)

4) Signal to Noise Ratio: An important issue to investigate
concerning the functional prototype implementation is if there
were significant differences between EMG signals acquired
with CE and acquired with TE. As described in the previous
section, two sets of tests were performed: one using the SNs
attached to the limbs with adhesive tape and the CE placed
under the respective muscles; and another test was performed
using the pantyhose that incorporated the TE. Since the CE
and TE data was obtained in different and thus independent
assays, SNR was used to compare the signals acquired with
both TE and CE.

C. Miniaturization of the SN

In order to comply with the requirements regarding size and
energy consumption, the sensor nodes had to be miniaturized.
For this purpose, the design of the main-board of the SN
and the sEMG Analog Front-End (AFE) was adapted to fit
in a 3x3 cm PCB. The choice of this size was driven by
the intention of making the SN as small and lightweight
as possible for better integration in the garment. Moreover,
decreasing the power consumption of the system is a matter
of prime importance to allow for long-term monitoring without
the need for the patient to recharge or switch batteries. Opti-
mization of energy resources is a major concern in currently
available technologies and a great effort is being made towards
the development of low power consumption systems, often
coming at a cost of lower precision, computational power and
data transmission [15]. In the original design, each SN was
connected to an AFE daughter-board, so each one of the four
muscles was monitored by a separate AFE. In the new design,
however, each AFE can acquire signals from more than one
muscle because the ADS1298 has 8 input channels. So it is
possible to connect up to 8 pairs of electrodes to each AFE.
In the first prototyping phase only a set of two muscles will
be monitored using a single sensor node in each limb. This
allows saving resources, decreasing total power consumption
and makes the system more comfortable for the user.

The circuit design recommended for EMG applications was
adapted to acquire sEMG signals from two channels. For the
AFE, many of the functionalities offered by the ADS1298
were not used since they are for ECG-specific applications.
So, apart from the RLD channel, all the other channels that
were not necessary were not being used were inactivated
and therefore the correspondent conditioning circuitry was
not included in the design, which considerably decreased
the amount of space and energy allocation require in the
PCB. Regarding circuit components, each input channel was
conditioned with filters and diodes for patient safety issues
and for the protection of the chip against excessive currents.
Furthermore, internal reference and internal clock were chosen
over external configuration, thus avoiding the use of additional
components. The unused input channels were connected to the
analog voltage supply through pull-up resistors, and similarly
unused digital inputs were all connected to the digital voltage
in the same manner. The voltage supply is 3 Volt and pull-up
resistors were 10k. Additional components were included for
power management. The analog channel protection includes
two schottky diodes and two low pass filters with cut-off fre-
quencies of 153 Hz and 339 Hz for high-frequency blockage.
The values of the resistors were chosen to guarantee that the in
case of single fail the maximum current flowing ot the patient
would not exceed the 500A recommended by the IEC 60601-1
norm. The use of schottky diodes was recommended in user
application notes of the ADS1298. In each SN a BAS40XY
SOT363 diode was used, since this package contains four
diodes, thus allowing for a more compact design.

The ADS1298 datasheet suggests two different configura-
tions for the RLD: either routing the RLD signal through
the patient body using a reference electrode, or by feeding



2013 - PBIO 6

the output signal of the RLD amplifier back into the chip
multiplexer to serve as reference for the PGA of the input
channels. The effects of using either configuration in this
application were unknown, so a jumper was added to the
circuit to allow for changing the configuration in different
tests. The AFE board was conceived to interface directly with
the textile leads in the leggings, whereas the main-board is
mounted on top of it through connectors. The electrical contact
between the AFE and the leads is guaranteed by eight small
metal-platted pads pierced into the PCB. These pads will be
sewed to the leggings using conductive yarn to establish a
path for the current. In addition, the AFE board also contains
a connector for SPI communication with the main board. The
connector provides extra links to the CS, RESET and PWDN
pins of the ADS1298 thus allowing for the microcontroller of
the main-board to dynamically configure these pins. In order
to detect eventual flaws in the circuit and correcting before
sending the design to be fabricated in a local company, an
intermediate version was designed. In this prototyping phase
the small size packages of the electronic components were
changed to larger packages, so the circuit could be fabricated
in department of electrical engineering. This version uses a
PGA package ADS1298. A schematic is presented in the first
Figure of Annexe A.Until present date, the prototype is not
yet finished, so it was not possible to conduct the proper
preliminary tests.

In light of the application of the prototype in gait analysis
of patients with impaired walking capabilities, it becomes
essential to improve comfort, portability and autonomy of
the final product. With these characteristics in mind, one
of the project purposes is the development and design of a
more compact, light and energy efficient SN. The miniaturized
version of the sEMG AFE was designed using small scale and
low-power components. To capture and digitize bio-signals,
the newly developed highly integrated biosignal specific low-
power, 8-channel, 24-bit AFE device ADS1298 from Texas
Instruments Inc. (Dallas TX, USA) was a natural choice. This
analog-to-digital converter has 24-bit resolution and offers 8
input channels for multi signal acquisition. Furthermore, it has
the advantage of low power consumption (0.75mW/channel)
and low input-referred noise (4VPP), as well as internal gain
in the range of 0-12, which is rather important for this
application. Due to size restrictions, a BGA configuration
was used. The circuitry (see Figure in Annexe A). includes a
conditioning circuit for the ADS1298, a digital interface with
the network and a RLD circuit. The chip and the conditioning
circuit were incorporated in a Printed Circuit Board (PCB),
made of flexible substrate (PCV) to enhance the compactness
and ergonomics of the prototype.

D. Code

A code for communication between the microcontroller
in the main-board and the AFE was also developed. This
code has the following functionalities: initialization of the
ADS1298, data retrieval in continuous mode, reset and standby
configurations. The code was written in C language to be
afterwards included as a library in the main driver code of the

microcontroller. A flowchart of the implemented algorithm is
presented in Annexe B

III. RESULTS

A. System Analysis and Validation

1) Processing: The results of the filtration are shown in
Figure 3,4,5 and 6and correspond to the sensor placed on
the front of the upper limb while performing the segment A.
Figure 3 and 4 corresponds to EMG filtration performed with
CE and TE, respectively. Fig.1b-2b and Fig.1c-2c shows the
EMG signals, after the median filter to adjust the offset and
the LP to remove the noise, respectively. The obtained signal
after RMS is shown in Fig.1d-2d. Inertial signals filtration is
presented in Figure 5 and 6, in which is possible to visualize
the results after the average and LP filter for both inertial
sensors and both type of electrodes.

Fig. 3. EMG signal acquired in the upper limb front with segment A and
CE. a) Initial EMG signal; b) EMG after average filter; c) EMG after average
and LP filer; d) EMG after average, LP and RMS filter.

2) Activity Profiles identification:
• One Sensor

As represented in Fig.7 the aligned signals obtained with CE
present for one peak of contraction, two peaks of acceleration
and angular rotation. However, in the tests with TE the second
peak is very subtle.

• Multiple sensors
Low pass filtered EMG signals for the test segment e, walking,
are shown in Figure 8 for each of the 4 CE placed on the leg.
Especially for the lower limb back module, we can distinguish
clearly the peaks corresponding to each of the six steps
performed with the right leg. As expected, the contraction
pattern seems to differ according to the muscle. To compare
and analyze the functional relationship between the 4 different
muscles, it is necessary to align the multiple signals. Given
different aquisition events (it was impossible to conduct trials
at the same time with the same subject) there were no textile-
convenctional pairs to align.
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Fig. 4. EMG signal acquired in the upper limb front with segment A and
TE. a) Initial EMG signal; b) EMG after average filter; c) EMG after average
and LP filer; d) EMG after average, LP and RMS filter.

Fig. 5. Inertial signals acquired in the upper limb front with segment A
and CE. a) Acceleration signal after average filter; b) Acceleration signal
normalized in amplitude after average and LP filter; c) Gyroscope signal after
average filer; d) Gyroscope signal normalized in amplitude after average and
LP filter.

3) Multiple Alignment: The algorithm devised has success-
fully aligned all signals establishing a common time base.
For instance, for signal ”ContraoS1-1” shown in figure 9 it
produced the following alignment matrixes:

D =


0 −46 8 −10
46 0 105 0
−8 −105 0 −260
10 0 260 0

 (12)

Davg =


0 −51.00 105.67 −102.67
51 0 139.67 39.67

−105.67 −139.67 0 −127.67
102.67 39.67 127.67 0

 (13)

Fig. 6. Inertial signals acquired in the upper limb front with segment A
and TE. a) Acceleration signal after average filter; b Acceleration signal
normalized in amplitude after average and LP filter; c) Gyroscope signal after
average filer; d) Gyroscope signal normalized in amplitude after average and
LP filter.

Fig. 7. Signals alignments acquired in the upper limb front with segment
A. a) EMG and acceleration alignment with CE; b) EMG and gyroscope
alignment with CE; c) EMG and acceleration alignment with TE; d) EMG
and gyroscope alignment with TE. Blue - inertial signal; Red - EMG signal

Resulting in the following global delays:

d1 = −103; d2 = −40; d3 = −140; d4 = 0; (14)

From which we can extract that 4 is our earliest signal, and
by cutting di samples from each signal we will have a better
alignment.

The resulting alignment yelds the comparison of figure 10
The quality of the alignment is not subject to any parameter

of performance (for the alignment itself was computed to yeld
the best value of cross correlations). Only by inspection can
we determine that the “phase shift” like quality is lessened by
the global alignment.
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Fig. 8. EMG signal acquired in segment e with CE and filtered with the
low pass filter. a) upper limb front; b) upper limb back; c) lower limb front;
d) lower limb back.l

Fig. 9. Magnitude of the IMU from the 4 sensors: blue - sensor 1, red -
sensor 2, green - sensor 3, cyan -sensor 4.

There can occur the problem of signal loss by temporary
communication failure in the middle of the signal - generating
sampless time intervals for which there is no data . This,
severelly debilitates the alignment of the other channels, and is
a vulnerability we found. However this is due to an undesireble
error which is expected to be corrected in the aquisition and
communication roboustness.

4) Signal to Noise Ration: As presented in Table I the
SNR of EMG data collected with TE (mean for all tests was
1,6881) was in general lower than SNR of EMG data collected
with CE (mean for all tests was 1,8334). However for the
walking test the opposite was verified. This could be due to
the lower stability of the TE comparing with CE when the
user is walking.

Based on Table I and Figures 3 to 7 it is possible to conclude
that no significant difference exists between EMG signals
captured with TE and EMG signals captured with CE. In the
future it will be necessary to perform the tests using TE and
CE simultaneous and analyze both signals using the Bland-
Altman plot in order to obtain more accurate conclusions about
the difference between TE and CE EMG signals.

Fig. 10. Close up of some peaks from figure 9 (top) before alignment;
(bottom) after alignment and resampling

TABLE I
SNR FOR CE AND TE EMG DATA, FOR DIFFERENT TESTS

CE TE
S1 contraction 2,6529 1,6906
S2 contraction 1,4421 1,4591
S7 contraction 1,6297 1,5048
Max contraction 1,8646 1,2823
Running 2,0015 2,0569
Walking 1,4094 2,1246

IV. DISCUSSION

The filtration of the EMG signals was successfully achieved
using first an average filter to eliminate the offset, then a low
pass filter reduced the noise of the signal, which permitted to
obtain a better signal, finally the RMS filter highlighted the
peaks of the signal improving signal alignment and compari-
son between different signals.

The filters applied for the inertial signals were not as
successful as for the EMG. The offset was fully removed
with the average filter. Noise removal proved to be more
difficult with the low pass filter because the inertial signals
still presented some noise after filtering, especially with TE.

Since the simultaneous usage of both sets of electrodes was
not possible, the alignment and correlation of the data acquired
with TE and CE for each test was unfeasible. However,
the detection of locomotion activity profiles in the segments
performed with CE may be useful to map some of these
patterns in the data from TE and consequently, conclude if
any information is lost by using TE instead of CE.

From the data acquired with one sensor in the front of upper
limb, while the segment A was performed, it is was possible
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to observe that when the muscle contracts an acceleration and
an angular rotation is promoted. After the muscle relaxation
another peak of acceleration and angular rotation is observed.
This second peak may correspond to the return to initial
position. In the relaxation state no contraction occurs, only
acceleration and rotation, which this is in accordance with
the obtained graphics. When comparing the same segment
with TE, the EMG and inertial signals show a similar pattern.
However the second peak of gyroscope was more attenuated
and the comparison was not precise since SNR for this
segment was lower than with CE, as seen in the first line
of the Table I.

It was not feasible to compare different tests because the
amplitudes of the signals had different ranges. this was due
to the recurrent changes on the gain and the loss of TE
humidity with time. Despite this limitation, for the same test
the acceleration has showed to be higher with more muscle
contraction, which is in accordance with literature [6]. The
tests with the TE and leads revealed the presence of parasitic
interference in the acquired signals. In order to assess the
level of noise affecting the signals, some simple motor tasks
were conducted inside an anechoic camera. It was noted
from the shape of the noise that it was probably caused by
crosstalk between the electrode leads and the data leads. After
some adjustments in the leads of the leggings, this effect was
attenuated and the following tests were not affected by this
noise.

A very important feature of movement analysis systems for
activity monitoring and prediction, such as the case of gait
analysis, is the capacity of proving real-time signal processing.
That can be accomplished either by implementation processing
tools on the microcontroller of the sensor node itself, or by
relaying the data to a local work station where the collected
data can be processed using more powerful resources.

However, the computational and power constraints imposed
by the hardware used, low power microcontrollers, poses a
major challenge to firmware developers. Fast and compu-
tational efficient algorithms are necessary for on-chip data
processing, which many times may not be available. Another
advantage of processing data in the sensor node rather than
on a remote platform is that it allows for considerable data
dimensionality reduction through the computation of clinically
relevant parameters, which are transmitted in place of the
whole collected signal. This strategy not only improves the
speed of data communication in the network but also decreases
the energy requirements of the system.

The method utilized here is based on getting the clock
information from the node which is on the path to the BS node
with minimum cost. Each node sends a request to the closest
neighbor node and the receiver node replies with a message
including its real time clock, so each data packet generated
by the sensors has time stamping information. Therefore,
this information can be used for time synchronization. There
are some delays related to the propagation time (considered
negligible), processing time and to the tolerance of the clock
crystal. With 300 ms refreshing period, the error associated
to the protocol is estimated in 18 s. The measured average
processing time is about 180 s and since the EMG sampling

frequency results in a Period of 1ms, which is more than
(18018)us, this method satisfies the timing synchronization.

Apart from this error related to the protocol, there is also
an error associated with the acquisition of the signals. Each
IMU sample is affected by an intrinsic delay that can reach
20ms. This delay corresponds to the time interval when the
microcontroller collects the data samples to add to the packet.
The precise delay varies for each sample and cannot be
quantified. On the other hand, the data is streamed out of
the microcontroller in a packet with 255 bytes length, each
packet containing the time of first sample. The time stamp
information (in the beginning of the packet) are issued by the
Base Sensor Node according to its internal clock, so ideally
they should be synchronized for all modules. However, due
to a degree of imprecision associated with the clock, it was
verified that at times there were some time lapses in signals
coming from a particular SN, which could compromise the
global synchronization of the signals. It was not possible
to assess the maximum error that could affect the signals
due to the complexity and topology of the mesh network
implemented in the system. However, with the information
available and from a qualitative point of view, it did not seem
that both the sEMG and IMU signals were incongruent. The
point was to evaluate whether there were significant delays and
movement artifacts in the signals which would invalidate the
system a gait analysis tool for healthcare purposes. However,
it is not straightforward to conclude whether or not these
small errors could translate into a diagnosis mistakes because
it would depend to some extend in what kind of signal
processing and classification methods would be done on the
data. A future improvement in the communication protocol
would be the introduction of synchronized time stamps in the
signals so that an absolute alignment could be done in offline
mode.

During the execution of the tests with the TE, it was
necessary to wet them in order to obtain a sufficient acceptable
signal. This auxiliary process is not feasible for clinical
applications and is also a limitation of the actual system.

V. CONCLUSION

Taking results together, the main conclusion is that several
limitations of the system itself are still to be solved. Never-
theless, important results are worth being noticed. One of the
main purpose of this work was to evaluate the already available
funtional protype, its performance and suggest alterations. In
fact, the prototype was tested and its main limitations have
been enumerated during the previous text. A miniaturization
of the hardware was proposed and some problems such as the
way the SN would attach to the stockingwere solved.

Initially three types of tests were planned: compare the
results of TE with CE and evaluate the influence of both
moisture and moviment artifacts in the TE signals. Ideally the
first set of tests would be performed with the simultaneous
acquisition of both TE and CE. In this way, correlation
between signals and Bland-Altman plots would be acquired
and significant differences could be assessed. Unfortunatly that
was not possible, but yet the performed tests allowed to infere



2013 - PBIO 10

that despite being more attenuated then CE signals, TE and
CE signals do not seem significantly different. The influence
of moisture in TE signals was assessed and the movement
artifacts, although have not been directly tested, were visible
and their influence already discussed. Results from these
tests showed that contrarily to the initial expectation, the
moisture does affect TE signals but the presence of swet is
not negative. In fact moisture improves the gain of TE and
besides being benefic it is necessary. Concerning the effect
of stockings/TE movements, movement does affect signals.
The extent in which movemetns artifacts degrade TE signals
was not clearly assessed, but tests with the future prototype
which will include the suggested alterations will answer that
question. In the future, these tests must be redone with the new
functional prototype. This will include our modifications and
miniaturized hardware, but despite of already being ordered
a few time ago, until the delivery of this report, it has not
arrived.

Further considerations about the evaluted prototype are
described next. We identify the impossibility to wash the
stockings, which is not feasible for multiple users or even
for long-term monitoring because of trasnpiration. Besides,
we discovered that according to the normatives, the wearable
devises should be replaced each three months. Based on
that, stockings should be disposable and a new configuration
should consider this problem. The actual system is also not
completely practical due to the attaches connecting the nodes
to the stockings. Concerning the execution of the planned tests,
the system should be more stable during running or jumping
in order to obtain less noisy signals, the acquisition of EMG
signals simultaneously with TE and CE is mandatory in order
to obtain more feasible results. Therefore future work should
focus on the improvement and optimization of the system, to
reduce the identified limitations, and a few suggestions are
presented in the next section.

VI. FUTURE WORK

Further testing is necessary to validate the system and prove
its reliability. Future tests should acquire TE signals using the
miniaturized solution that was designed. The circuit and TE for
the next prototype must be directly embedded into the stocking
cloth and not manually stitched, as it was done for the current
prototype.The solution of manually stitching the attaches to
the stockings with conductive wire still has to be reviewed.
Better alternatives to attach them efficiently to the cloth were
still not found. On a later stage, conductive wiring in the cloth
should be electrically isolated, for instance, covering them with
insulator material. For that purpose, different solutions have
to be tested, as for example silicones or resins. A silicone
circle could also be place around the TE in order to prevent
electrode dislocation. Future tests, with an advanced model of
the prototype, should also use the segments already specified
but performed initially by healthy test subjects and then by
persons with special conditions, such as Parkinson patients or
injured athletes. Tests concerning movements artifacts must
be done, and in order to do so we suggest to acquire signals
of the each segment with TE dislocated few centimeters from

the optimal poitn and compare the obtained signals. Another
important issue that should be addressed is the reliability of the
data, that is, lossless transmission of the signals. In healthcare
applications this point is of particular relevance since medical
diagnosis is based on the quantitative parameters extracted
from the physiological data. So, the loss of a segment of
signal due to transmission failure is not acceptable. A future
improvement in the communication protocol would be the
introduction of synchronized time stamps in the signals so
that an absolute alignment could be done in offline.
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APPENDIX A
ENLARGED SCHEMATIC DETAIL

Fig. 11. Circuit schematic of the miniaturized Analog Front End, using an
ADS1298 with BGA package and reduced-size components.
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Fig. 12. Circuit schematic of the intermediate miniaturized Analog Front End prototype, using an ADS1298 with PGA package, for preliminary tests.



2013 - PBIO 13

APPENDIX B
IMPLEMENTED CODE


