

1



Abstract— Active noise cancellation (ANC) constitutes nowadays a

major field of research with a myriad of applications in acoustics

and signal processing technology. Its potential for extracting signal

characteristics of interest in a noisy and otherwise unintelligible

content shows the importance of the development of these systems.

In this work, an Adaptive Noise Attenuation application has been

developed to attenuate the noise component of a signal acquired

inside a box using a signal captured near the noise source as

reference. The application works on the basis of adaptive filtering

NLSM algorithm. The optimal adaptation step (µ) has been

determined and the extent of noise attenuation has been evaluated

over a variety of different scenarios. The noise attenuation was

achieved in offline and real time modes using Matlab as platform.

A C implementation of the real time approach has also been

developed to improve the results.

Index Terms—ANC, adaptive filtering, NLMS, Matlab, VAD

I. INTRODUCTION

his work envisioned the development of a system for

cancelling the noise associated with a signal of interest

without altering its characteristics and the informative contents.

The source of the signal of interest was considered to be located

inside an enclosed box, constituting a closed system, and the

noise source outside in an arbitrary location in space. Also, the

noise signal and signal of interest are, for practical purposes,

uncorrelated.

The idea involved the construction of a system on the basis of

a microphone/loudspeaker set-up (Fig.1). A microphone was

placed on the outside close to the noise source for capturing a

reference uncorrelated signal, and another microphone was

placed inside the box (in an arbitrary point of space) so as to

acquire the signal to be processed for noise attenuation.

The original idea involved the construction of an acoustic

cancelling system on the basis of the same

microphone/loudspeaker set-up, but with a second loudspeaker

acting as the cancelling sound field source instead of the signal

of interest. The physical principal underlying this idea is sound

field destructive interference, whereby a counter wave is emitted

from a cancelling loudspeaker with amplitude-phase

characteristic equal to the noise wave and synchronized so that

the waves match with opposite phases to cancel out. Though it

may look like a simple problem, in fact it poses many

challenges because of the highly complex behavior of sound

waves, especially in enclosed spaces. For one side, the multiple

delayed reflections and reverberation phenomena cause the

noise signal to be heavily distorted in the primary propagation

path (()acoustic response between the noise source and error

microphone), and also make it virtually impossible to produce a

cancelling wave that match this superimposed sound filed with

precision. Some other considerations regarding the secondary

path (() acoustic response between the cancelling speaker

and error microphone), that filters the cancelling sound itself

and the feedback path to the noise source aggravate even more

the scenario to the point where a system of this nature requires

high level of expertise to be accomplished. For further reference

on this problematic and the studies carried out to evaluate the

issue can be addressed in the website of this project mentioned

in the Appendix.

Fig. 1. Apparatus of the physical implementation of the system.

Fig. 2. Block diagram of the system.

II. MATERIALS

Based on the physical implementation presented in Fig. 1, a

HP Pavillion Dv6590 was used as laptop and the code was

developed in a 32 bit Matlab 7.12.0 (Mathworks). The

conversation of the Matlab routines into C language was

performed in Arch Linux using the ALSA (Advanced Linux

Sound Architecture). The loudspeakers used were a 2.1 Primax

stereo sound system (90W) and the microphones were a Sony F-

V410 and an unidirectional Philips SBC3030. An external USB

7.1 sound card (Sweex) was used because the set-up uses two

microphones and two speakers all working at the same time and

the laptop sound card is not prepared for it. The box was

constructed by the group and the procedure and materials used

are described in Appendix I.

III. METHODS

This work involved several phases, including the box

construction (described in the website) and the Matlab

Simulation (Appendix), followed by the simulation with real

signals in which the microphones were tested, the optimal filter

parameters were estimated and a statistical analysis was

Adaptive Noise Attenuation

Márcia Vagos , Nuno Sousa, Sílvia Bessa , FEUP

T

2

performed. Finally, a real-time approach was implemented first

in Matlab followed by its conversation to C language.

A. Adaptive Filtering Algorithm

The approach followed down to achieve the desired

attenuation was adaptive filtering. This powerful technique is

already well established in both research and industrial contexts

for its high quality results and application versatility. For

reference, the method involves passing the signal with the noise

to be cancelled through a filter whose coefficients are

dynamically updated in an iterative processing scheme so as to

adapt it to an ideal hypothetical solution at each iteration. The

coefficients are updated by defining some error signal and

determining the coefficients of the filter that minimize the

energy of that error signal. This way, the algorithm converges to

the ideal solution over a time span, eventually producing the

desired output. One of the main solutions for this problem is the

so called LMS algorithm, or otherwise NLMS, which a variant

that bares some advantages to be explored later. Depending on

the configuration of the microphone/loudspeaker and the

parameters known to the system, the algorithm can be

implemented in various ways and produce different results.

B. Attenuation in offline mode with real signals

 In this particular study case, the scenario (shown in Fig. 3)

evidences that the variables available are simply the two signals

captured with the microphones.

Fig. 3. Deployment diagram of the active noise cancellation system.

With these two signals, the algorithm must be configured to

output one signal that is virtually the subtraction of them. It was

expected to encounter extra difficulties in obtaining a good

convergence and noise attenuation derived from the fact that the

real () and () are indeed time varying responses in

contrast to the steady simulated responses previously used. The

time variations of the system conditions can have various causes

such as temperature and atmospheric pressure fluctuations.

Moreover, the equipment itself has inherent nonlinearities and

analog/digital conversion associated errors that further

aggravate this situation.

Since the filter is in fact modeling the impulse

response(attempt on Fig. 2 for better understand of the notation)

 () (the path between the noise source and the inside

microphone) from the noise, () is dependent of the nature of

that noise, whether it is music or white noise or speech, the low

pass characteristics, as well as the cross correlation with

 () can influence results. In this sense, the filter () ought to

adapt only when () (the signal to be extracted) is virtually

zero, allowing it to converge to () to reach the ideal solution.

Then, it is ready to cancel out the noise coming with

 () whatever it might be, assuming () and () are non-

correlated. This works well supposing that () does not

significantly change between consecutive adaptations. Stopping

the adaptation process once the filter has reached the ideal

solution prevents it from diverging in the presence of the

disturbing signal ().

Bearing this idea in mind, the noise attenuation was carried

out in a two module scheme, simulating a perfect VAD. In the

first stage, () was allowed to adapt to () setting ()
 In the second stage, a series of noise samples were

introduced along with () (the same for all the tests) and the

inside microphone signal was filtered in real time with this

estimation of ()
Have seen that, this task was divided into three subtasks:

firstly, the microphones were tested and calibrated (appendix

III.1), then the optimal µ (a filter parameter) was determined

using an automated routine with white noise and classical music

as noise signals, with µ varying within the range 0.1-1.0 and

finally, the system’s efficiency was determined by performing a

quantitative evaluation of the results using the predetermined

optimal µ and a specific music playlist.

The results were the quantitative analyzed considering a

measure for the degree of noise attenuation. A measure

frequently used is the ERLE coefficient, defined as below:

 (1)

which should be a positive value when there is noise

attenuation, or zero when there is not. ERLE is a value

determined for each sample of the captured signals and thus

provides a mean for assessing the evolution of attenuation

degree throughout the cancelling process. The final ERLE

values were used for comparison purposes between the different

noise clips.

The box attenuation coefficient (BAC) was also determined

using a similar definition, with () :

 (2)

C. Cancellation in Real Time mode

The next challenge was to transpose the implementation to a

real time application, that is, performing the filtering of the

signal from the interior microphone with an estimative of ()

while the signal is being captured. This naturally carries some

technical considerations regarding parallel programming

knowledge in programming with Matlab.

One important consideration regarding this point is the

concept of real time acquisition. Being a Matlab application, a

true real time processing is never perfect, since the triggering

can only occur when some input buffer has been received from

the sound board. Plus, there is also a time lapse caused by the

start acquisition process, so all these delays make the output

delayed. Fig. 4. presents the activity diagram which illustrates

the parallel methodology used. Equations (3)-(6) define the

referred times.

3

Fig. 4. Activity diagram of the real time mode.

 and (3)(4)

 (5)

 (6)

where is the processing time, is the acquisition time,

Ns is number of samples in the input buffer. K is a constant

determined by the computation complexity and the CPU

processing power. It was assumed to be kept unchanged. Q is

also a constant defined as the time lapse of the start acquisition

process and can determined offline in a pre-phase.

Since Matlab imposes a minimum sampling frequency and

the constant K is very big, the theoretical maximum sampling

frequency is actually lower than the minimum frequency that

can be used in the input, which means, processing always takes

more time than acquisition. This implies that some sound frames

are dropped, and the signal is not perfectly sampled and

processed. For instance: processing 0.1s at 10 KHz of sampling

takes approximately 0.8s for a 1000 order filter.

Although Matlab has a large pack of parallel programming

tools which implement hardware semaphores and thread

management to synchronize threads (in this case processing and

acquisition), unfortunately that toolbox was not available, and

threading was done using global variables for semaphores which

revealed plenty of technical problems in the propagation of

scope of variables. Eventually minor hacks enabled such method

to work.

 Should processing and acquisition be synced and the Voice

Activity Detector (VAD) work optimally, the results are

expected to be exactly equal to those with offline mode (post

acquisition processing since the signals are the same, only the

time at which processing occurs changes).

D. C implementation:

The need for a dedicated binary routine which performs the

given tasks became obvious when the real time performance

with Matlab was known. Windows itself introduces many

delays, though it facilitates direct access to the hardware which

enables serious producers to create good audio applications.

However, Linux provided a much more suitable environment to

implement the native code. Its Advanced Sound Architecture

allows for easy direct access to the hardware without having to

circumvent any of the hardware managing programs that are

present in windows. The advantage of binary compiled

applications over interpreted code is well-known and ultimately

led us to try using the lower level languages. C was the obvious

choice for its ubiquity in resources examples and portability in

Linux.

The choice of algorithms in the real time implementation

allowed for direct conversion between the Matlab algorithm and

the binary implementation. The idiomatic paradigms of C also

make it much easier to optimize certain aspects of the program,

such as calculating signal energy (adding and removing squared

samples to an energy variable). The optimizations and the

velocity of running binaries allowed for the port to directly work

without losing samples over time.

E. VAD

An implementation of a VAD system was devised for the

sake of testing the adaptation/cancellation in a single module

scheme, as opposed to was had been done before. The basic idea

consisted in performing the cross correlation between some x

and y samples previously obtained, and determining the value of

the peaks in the graph corresponding to instants where the baby

sound is almost inaudible, which then constitutes the threshold

for turning on the adaptation process. These thresholds would

then be set “manually” in the algorithm so that each time the

cross correlation reached such value the VAD would be

triggered.

In truth, the design of a VAD algorithm is very hard, since the

complexity of the mathematical/signal processing considerations

make the development of a fully-fledged VAD well above the

scope of this project. It should also be noted that the sheer

complexity of the already developed algorithms make the VDA

implementation unsuitable for our live time applications (which

are the ones VAD is to be used on). There are little resources

available for continuous light implementations of VAD systems.

IV. RESULTS AND DISCUSSION

A. Cancellation in offline mode with real signals

When it comes to testing the algorithm with real signals

acquired using the microphones, some degradation of the

performance was noticeable. One serious problem encountered

when acquiring real signals was that they were highly attenuated

and distorted as well as low pass filtered, especially inside the

box, as already mentioned. This posed some practical issues on

properly assessing the filter’s efficiency. At first it was

somehow challenging to perceive the differences between the

interest sound the filter outputted (error signal) and the recorded

signal, yet with the optimization of the system the results are

much more palpable, being that now there is a perceived

qualitative attenuation of the noise.

Considering what has been explained concerning the filtering

process, it is worth to notice that in practice, however, the filter

can only approximate to the ideal solution, thus some noise will

be constantly present in the noise-cancelled signal, though with

acceptable attenuation. The system can only work as long as

 () is kept unchanged throughput the process; otherwise the

adapted is constantly deviating from the ideal solution and

little or no noise is canceled at all. Note that in this work ()

was assumed to be constant during the periods where () is

not zero and is not adapting, because some conditioning

4

measures were taken, namely keeping the

loudspeaker/microphone set-up in fixed positions.

B. Optimal parameters

Attending to Fig. 5 it can be concluded that the system works

optimally with µ=0.1, seeing as these values corresponded to the

greatest amount of noise cancellation. As µ approaches unity the

amount of attenuation tends to zero for the white noise and

slightly decreases for the Beethoven sample.

Fig. 5. ERLE values versus µ (range 0.1-1.0) with increments of 0.1.

C. Noise cancellation Analysis

In Fig. II4 and II5 are presented the converged () in

offline mode, used to perform the noise attenuation stage with

each music of the playlist. Note the similarity to the filter used

in the simulation for modeling () in Fig.I2. This response is

somewhat according to what could be expected regarding the

effect of the box in the sound waves.

In Fig. 6 and Table I the results of the conducted test battery

of musics as noise vs the sound of a baby crying are shown. The

results are unanimous in showing a clear attenuation further the

natural one provided by the box. With an average 17dB

attenuation (-17dB gain) between the filtered signal and the

signal with the baby crying plus the noise. Qualitatively the

baby can be heard crying much better in the filtered signal, in

some cases (such as very strong white noise) the baby cannot be

heard at all in the original signal, and can be heard very well as

the main source of sound in the filtered signal, proving the

effectiveness of the system.

Fig. 6. ERLE final values obtained in offline mode for each of the twelve

music clips in the playlist using parameters µ=0.1, lw=1000, Fs=10kHz and a

duration of 40 seconds.

Table 1. ERLE an BAC values of the graphic in Fig. 5

Music Reference

b(n)≠0 b(n)=0

20log10(E/X) ERLE (Y/E) BAC (Y/X)

acdc 63.16 22.53 44.81

apocalyptica 55.20 10.33 46.19

epocha 58.36 18.11 40.89

hallowed 58.54 14.09 45.64

hendrix 64.22 24.77 39.56

iron 61.34 16.06 44.79

moonspell 60.39 21.89 38.73

overture 48.87 12.88 37.76

kings of lion 57.34 16.95 40.62

skunk 62.52 23.85 38.92

teardrop 53.64 13.71 41.22

wonderful 63.16 22.53 44.81

Average 58.51 17.74 41.74

 4.59 4.89 3.06

D. Cancellation in Real Time mode

As a fully functional system required the sound of interest

inside the box to be audible in real time, the algorithm was

adapted so as to allow for parallel acquisition and processing of

the input signals. The real time adaptative filter in matlab

converged to a solution somewhat similar to the one in offline

mode, however, the effect of a lossy adaptation is evident the

steady behavior of the filter, especially in the later samples.

Fig. 7. Real time w: Note that the peak corresponds roughly to the distance

between the microphones.

V. CONCLUSION

The real world technical problems associated with audio

applications make the seemingly trivial algorithms of simulated

work very complicated. The gratification when the said

algorithm work in the real world far exceeds simulation as well.

Our initial goals of 3dB attenuation were overcome, and the

actual effectiveness of this system was well above what we

thought we might get in the real world. Despite our best efforts

the VAD detector didn’t work as expected, compromising the

live time implementation. Given the right tools for handling

audio this system could work very well and very fast indeed.

APPENDIX

Further images and code routines, can be found at

http://paginas.fe.up.pt/~bio07040/, projects section, LIEBIII.

ACKNOWLEDGMENT

The authors gratefully acknowledge Professor Bruno Bispo for the

orientation in this project.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

mu values

E
R

L
E

=
1
0
lo

g
1
0
(E

y
/E

e

white noise

beethoven

http://paginas.fe.up.pt/~bio07040/

5

APPENDIX I: MATLAB SIMULATION

In this phase NLMS algorithm was implemented using

simulated signals and a model of the system to test its

adaptation behavior and determine the optimal parameters as

well as testing the influence of the nature of the signals

employed.

The two signals can be described by the following equations:

 () () () (1)

 () () () () (2)

where () models the impulse response of the primary path,

and () models some secondary path from the noise source to

the reference microphone. Naturally, these functions are

unknown and thus the algorithm must be independent of their

values. () is the sound field output by the noise source,

without any distortions due to distance, echo and reverberation

phenomena. Note that () is a function that models the path all

the way from speaker to error microphone, which includes

delays due to propagation distance, reflections and the

impedance to high frequencies provided by the box. Similarly,

 () models the distortion of the sound field from speaker to

reference microphone, which is much less severe than that

occurring in the primary path. For simulation purposes, ()

was modeled with three different functions: as a unity transfer

function (()), as a simple delay (()), and as a

train of delays in much the same way as P(n) was modeled in

the simulation phase. This three functions were considered for

 () in order to assess the influence of this parameter in the

outcome. Note that in the two last cases it was necessary to

guarantee that the longest delayed pulse is not greater than the

time propagation of sound in the primary path.

The governing equations are the following:

Error signal:

 () () () () () () () () (3)

Filter adaptation coefficients:

 () ()

 () ()
 () () ()

The acoustic impedance of the walls of the box posed a

natural low pass filtering response to the incoming sound waves,

thus preventing the noise high frequency contents from reaching

the inside microphone and disturbing the crying sound.

 An offline adaptive filtering application was developed in

Matlab implementing the well-known NLSM algorithm for its

good performance in general purpose noise cancelling. The

signals used to simulate the inside microphone were a clip of a

Mozart composition and a baby carrying sound. The

corresponding waveforms are shown in Fig.I1. The outside

microphone was simulated with white noise.

Fig. I1. Signals used to simulated the sound captured by the inside

microphone.

Table I1. ERLE values of the final outputs obtained in each scenario

(1.0e+006).

 Mozart Baby crying

S1(n) 6.0556 5.8474

S2(n) 6.0887 5.8302

S3(n) 0.1290 -0.0986

 The secondary path () was modeled with three different

functions:

 ()

 ()

 ()

Fig. I2. Filters used to model the () (upper) and () (lower) in

the simulation.

The output obtained with the “Mozart” signal and using

 (), along with the original signal, is presented in Fig. II3

below. From this figure, it can be seen that the resemblance

between the original crying signal and the output is strikingly

visible, which shows that the filter managed to adapt very

well over a reduced number of samples. Apart from some

delay caused by propagation distance in the filters used to

mode ()and ()some high frequency attenuation, the

result was fully satisfactory. The error signals can be seen to

have converged over time and the ERLE values exhibited an

increasing behaviour towards the final samples (see Figs. I4

and I6).

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.1

-0.05

0

0.05

0.1

mozart

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.2

-0.1

0

0.1

0.2

baby cry

0 1000 2000 3000 4000 5000 6000 7000
-0.05

0

0.05

0.1

0.15

n\rightarroe

P(n)

0 5 10 15 20 25 30 35 40 45 50
-0.2

-0.1

0

0.1

0.2

n\rightarroe

S3(n)

6

Fig. I3. “Mozart” signal before (upper) and after (lower) noise

cancellation with w(n).

Fig. I4. Error signals from the Matlab Simulation with “Mozart”, using

µ=0.1, lw=4000.

Fig. I5. ERLE values throughout the processing with w(n), using

“Mozart” inside signal.

Fig. I6. Error signals from the Matlab Simulation with a baby crying

cound, using µ=0.1, lw=4000.

Fig. I7. ERLE values throughout the processing with w(n), using

“Mozart” inside signal.

Fig. I8. w(n) vectors of the simulations with either “Mozart” and baby

crying signals (superimposed).

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.1

-0.05

0

0.05

0.1

mozart

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.1

-0.05

0

0.05

0.1

filter output

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.1
0

0.1

time

a
m

p
lit

u
d
e

0.1*WN+mozart

mozart

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.05
0

0.05

time

a
m

p
lit

u
d
e e(n) with S1(n)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.05
0

0.05

time

a
m

p
lit

u
d
e e(n) with S2(n)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.05
0

0.05

time

a
m

p
lit

u
d
e e(n) with S3(n)

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
x 10

7

time

a
m

p
lit

u
d
e

erle(n) with S1(n)

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
x 10

7

time

a
m

p
lit

u
d
e

erle(n) with S2(n)

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
x 10

6

time

a
m

p
lit

u
d
e

erle(n) with S3(n)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.2
0

0.2

time

a
m

p
lit

u
d
e

0.1*WN+baby

baby

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.05
0

0.05

time

a
m

p
lit

u
d
e e(n) with S1(n)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.05
0

0.05

time

a
m

p
lit

u
d
e e(n) with S2(n)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.05
0

0.05

time

a
m

p
lit

u
d
e e(n) with S3(n)

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
x 10

7

time
a
m

p
lit

u
d
e

erle(n) with S1(n)

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
x 10

7

time

a
m

p
lit

u
d
e

erle(n) with S2(n)

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
x 10

6

time

a
m

p
lit

u
d
e

erle(n) with S3(n)

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

0

0.1

n

w
(n

)

S1(n)

0 500 1000 1500 2000 2500 3000 3500 4000
-0.1

0

0.1

n

w
(n

)

S2(n)

0 500 1000 1500 2000 2500 3000 3500 4000
-0.2

0

0.2

n

w
(n

)

S2(n)

7

Note that the results in both cases were closely similar. The

ERLE values seemed to be better for the case where () or

 ()were used, as would be expect. When the secondary path

was modeled with (), the results were not so good. Not only

the error did not manage to adapt so well, as can be seen from

the larger error, but also the ERLE vector assumed negative

values, which is somewhat unexpected. As a matter of fact, it

was not surprising that the result was worse for the case where

we used (), which introduces some instability in the

convergence of (), but still the reason for such low ERLE

values is not straightforward.

Considering the () vectors in Fig. II8, the fact that for each

case the filters resulting from both simulations are completely

superimposed evidences the algorithm’s capability of adapting

to the primary path impulse response regardless of the nature of

the inside sound.

The algorithm’s performance was also studied with different

noise signals for the outside microphone, namely white noise

and classical music and in both situations the outcome was a

clean undistorted sound. It could be noted that the initial instants

were still affected by some noise with decaying magnitude as

the filter actively adapted to the incoming sample.

The algorithm and values of the parameters used in the

simulation can be consulted in website aforementioned.

8

APPENDIX II: SIMULATION WITH REAL-SIGNALS

 II.1. Microphone Calibration

Before acquiring the real signals for the simulation with real

signals, the microphones were tested by capturing a live played

signal from an electric guitar and varying their distance to the

signal source. The acquired signals are presented in Fig. II1.

Although the signal from the Philips microphone had a higher

value of offset, an offset can be recognized for both

microphones. In order to minimize the offset effect, the mean of

each acquired signal was assessed and subtracted to the original

one. Fig.II2 presents the signals after this normalization,

evidencing that the signals from both microphones have the

same amplitude and phase which is desirable for this work.

Fig. II1. Calibration signals captured by Philips microphone (red signal) and

Sony microphone (blue signal).

Fig.II 2. Calibration signals captured by Sony microphone (blue) and Philips

microphone (red) normalized by mean.

Fig. II3. Converged () in offline mode.

II.1. Microphone Calibration

The () filters obtained in the real time mode for the playlist

(in the same order) are presented in Figs. IIV3 and IV3 below.

Figs. II4 and II5. Resultant filter for each music of the playlist. The

filters are presented in the same order specified in Table I.

9

APPENDIX D: REAL-TIME MODE

The algorithm implemented in Mattlab previously referred to in the real time

cancellation section can be described by the diagram presented in Fig. IV1.

Fig. III1. Flowchart of the real time mode.

