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 

Abstract— Active noise cancellation (ANC) constitutes nowadays a 

major field of research with a myriad of applications in acoustics 

and signal processing technology. Its potential for extracting signal 

characteristics of interest in a noisy and otherwise unintelligible 

content shows the importance of the development of these systems. 

In this work, an Adaptive Noise Attenuation application has been 

developed to attenuate the noise component of a signal acquired 

inside a box using a signal captured near the noise source as 

reference. The application works on the basis of adaptive filtering 

NLSM algorithm. The optimal adaptation step (µ) has been 

determined and the extent of noise attenuation has been evaluated 

over a variety of different scenarios. The noise attenuation was 

achieved in offline and real time modes using Matlab as platform. 

A C implementation of the real time approach has also been 

developed to improve the results. 

Index Terms—ANC, adaptive filtering, NLMS, Matlab, VAD  

I. INTRODUCTION 

his work envisioned the development of a system for 

cancelling the noise associated with a signal of interest 

without altering its characteristics and the informative contents. 

The source of the signal of interest was considered to be located 

inside an enclosed box, constituting a closed system, and the 

noise source outside in an arbitrary location in space. Also, the 

noise signal and signal of interest are, for practical purposes, 

uncorrelated.  

The idea involved the construction of a system on the basis of 

a microphone/loudspeaker set-up (Fig.1). A microphone was 

placed on the outside close to the noise source for capturing a 

reference uncorrelated signal, and another microphone was 

placed inside the box (in an arbitrary point of space) so as to 

acquire the signal to be processed for noise attenuation. 

The original idea involved the construction of an acoustic 

cancelling system on the basis of the same 

microphone/loudspeaker set-up, but with a second loudspeaker 

acting as the cancelling sound field source instead of the signal 

of interest. The physical principal underlying this idea is sound 

field destructive interference, whereby a counter wave is emitted 

from a cancelling loudspeaker with amplitude-phase 

characteristic equal to the noise wave and synchronized so that 

the waves match with opposite phases to cancel out. Though it 

may look like a simple problem, in fact it poses many 

challenges because of the highly complex behavior of sound 

waves, especially in enclosed spaces. For one side, the multiple 

delayed reflections and reverberation phenomena cause the 

noise signal to be heavily distorted in the primary propagation 

path (  ( )acoustic response between the noise source and error 

microphone), and also make it virtually impossible to produce a 

 
 

cancelling wave that match this superimposed sound filed with 

precision. Some other considerations regarding the secondary 

path ( ( ) acoustic response between the cancelling speaker 

and error microphone),  that filters the cancelling sound itself 

and the feedback path to the noise source aggravate even more 

the scenario to the point where a system of this nature requires 

high level of expertise to be accomplished. For further reference 

on this problematic and the studies carried out to evaluate the 

issue can be addressed in the website of this project mentioned 

in the Appendix. 

 
Fig. 1. Apparatus of the physical implementation of the system. 

 

Fig. 2. Block diagram of the system. 

II. MATERIALS 

Based on the physical implementation presented in Fig. 1, a 

HP Pavillion Dv6590 was used as laptop and the code was 

developed in a 32 bit Matlab 7.12.0 (Mathworks). The 

conversation of the Matlab routines into C language was 

performed in Arch Linux using the ALSA (Advanced Linux 

Sound Architecture). The loudspeakers used were a 2.1  Primax 

stereo sound system (90W) and the microphones were a Sony F-

V410 and an unidirectional Philips SBC3030. An external USB 

7.1 sound card (Sweex) was used because the set-up uses two 

microphones and two speakers all working at the same time and 

the laptop sound card is not prepared for it. The box was 

constructed by the group and the procedure and materials used 

are described in Appendix I. 

III.  METHODS 

This work involved several phases, including the box 

construction (described in the website) and the Matlab 

Simulation (Appendix), followed by the simulation with real 

signals in which the microphones were tested, the optimal filter 

parameters were estimated and a statistical analysis was 
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performed. Finally, a real-time approach was implemented first 

in Matlab followed by its conversation to C language. 

A. Adaptive Filtering Algorithm 

The approach followed down to achieve the desired 

attenuation was adaptive filtering. This powerful technique is 

already well established in both research and industrial contexts 

for its high quality results and application versatility. For 

reference, the method involves passing the signal with the noise 

to be cancelled through a filter whose coefficients are 

dynamically updated in an iterative processing scheme so as to 

adapt it to an ideal hypothetical solution at each iteration. The 

coefficients are updated by defining some error signal and 

determining the coefficients of the filter that minimize the 

energy of that error signal. This way, the algorithm converges to 

the ideal solution over a time span, eventually producing the 

desired output. One of the main solutions for this problem is the 

so called LMS algorithm, or otherwise NLMS, which a variant 

that bares some advantages to be explored later. Depending on 

the configuration of the microphone/loudspeaker and the 

parameters known to the system, the algorithm can be 

implemented in various ways and produce different results. 

B. Attenuation in offline mode with real signals 

 In this particular study case, the scenario (shown in Fig. 3) 

evidences that the variables available are simply the two signals 

captured with the microphones.  

 

 
Fig. 3. Deployment diagram of the active noise cancellation system. 

With these two signals, the algorithm must be configured to 

output one signal that is virtually the subtraction of them. It was 

expected to encounter extra difficulties in obtaining a good 

convergence and noise attenuation derived from the fact that the 

real  ( ) and  ( ) are indeed time varying responses in 

contrast to the steady simulated responses previously used. The 

time variations of the system conditions can have various causes 

such as temperature and atmospheric pressure fluctuations. 

Moreover, the equipment itself has inherent nonlinearities and 

analog/digital conversion associated errors that further 

aggravate this situation.  

Since the filter is in fact modeling the impulse 

response(attempt on Fig. 2 for better understand of the notation) 

 ( ) (the path between the noise source and the inside 

microphone) from the noise,  ( ) is dependent of the nature of 

that noise, whether it is music or white noise or speech, the low 

pass characteristics, as well as the cross correlation with 

 ( ) can influence results. In this sense, the filter  ( ) ought to 

adapt only when  ( ) (the signal to be extracted) is virtually 

zero, allowing it to converge to  ( ) to reach the ideal solution. 

Then, it is ready to cancel out the noise coming with 

 ( ) whatever it might be, assuming  ( ) and  ( ) are non- 

correlated. This works well supposing that  ( ) does not 

significantly change between consecutive adaptations. Stopping 

the adaptation process once the filter has reached the ideal 

solution prevents it from diverging in the presence of the 

disturbing signal  ( ). 

Bearing this idea in mind, the noise attenuation was carried 

out in a two module scheme, simulating a perfect VAD. In the 

first stage,  ( ) was allowed to adapt to  ( ) setting  ( )   
    In the second stage, a series of noise samples were 

introduced along with  ( ) (the same for all the tests) and the 

inside microphone signal was filtered in real time with this 

estimation of  ( )   
Have seen that, this task was divided into three subtasks: 

firstly, the microphones were tested and calibrated (appendix 

III.1), then the optimal µ (a filter parameter) was determined 

using an automated routine with white noise and classical music 

as noise signals, with µ varying within the range 0.1-1.0 and 

finally, the system’s efficiency was determined by performing a 

quantitative evaluation of the results using the predetermined 

optimal µ and a specific music playlist.  

The results were the quantitative analyzed considering a 

measure for the degree of noise attenuation. A measure 

frequently used is the ERLE coefficient, defined as below: 

            
    

    
               (1) 

 

which should be a positive value when there is noise 

attenuation, or zero when there is not. ERLE is a value 

determined for each sample of the captured signals and thus 

provides a mean for assessing the evolution of attenuation 

degree throughout the cancelling process. The final ERLE 

values were used for comparison purposes between the different 

noise clips.  

The box attenuation coefficient (BAC) was also determined 

using a similar definition, with  ( )   : 

           
    

    
               (2) 

C. Cancellation in Real Time mode  

The next challenge was to transpose the implementation to a 

real time application, that is, performing the filtering of the 

signal from the interior microphone with an estimative of  ( ) 

while the signal is being captured. This naturally carries some 

technical considerations regarding parallel programming 

knowledge in programming with Matlab.  

One important consideration regarding this point is the 

concept of real time acquisition. Being a Matlab application, a 

true real time processing is never perfect, since the triggering 

can only occur when some input buffer has been received from 

the sound board. Plus, there is also a time lapse caused by the 

start acquisition process, so all these delays make the output 

delayed. Fig. 4. presents the activity diagram which illustrates 

the parallel methodology used. Equations (3)-(6) define the 

referred times. 
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Fig. 4. Activity diagram of the real time mode.  

          and                        (3)(4) 

      
  

  
                         (5) 

   
  

     
 

  

     
                     (6) 

 

where     is the processing time,       is the acquisition time, 

Ns is number of samples in the input buffer. K is a constant 

determined by the computation complexity and the CPU 

processing power. It was assumed to be kept unchanged. Q is 

also a constant defined as the time lapse of the start acquisition 

process and can determined offline in a pre-phase.  

Since Matlab imposes a minimum sampling frequency and 

the constant K is very big, the theoretical maximum sampling 

frequency is actually lower than the minimum frequency that 

can be used in the input, which means, processing always takes 

more time than acquisition. This implies that some sound frames 

are dropped, and the signal is not perfectly sampled and 

processed. For instance: processing 0.1s at 10 KHz of sampling 

takes approximately 0.8s for a 1000 order filter. 

Although Matlab has a large pack of parallel programming 

tools which implement hardware semaphores and thread 

management to synchronize threads (in this case processing and 

acquisition), unfortunately that toolbox was not available, and 

threading was done using global variables for semaphores which 

revealed plenty of technical problems in the propagation of 

scope of variables. Eventually minor hacks enabled such method 

to work. 

  Should processing and acquisition be synced and the Voice 

Activity Detector (VAD) work optimally, the results are 

expected to be exactly equal to those with offline mode (post 

acquisition processing since the signals are the same, only the 

time at which processing occurs changes).  

D. C implementation: 

The need for a dedicated binary routine which performs the 

given tasks became obvious when the real time performance 

with Matlab was known. Windows itself introduces many 

delays, though it facilitates direct access to the hardware which 

enables serious producers to create good audio applications. 

However, Linux provided a much more suitable environment to 

implement the native code. Its Advanced Sound Architecture 

allows for easy direct access to the hardware without having to 

circumvent any of the hardware managing programs that are 

present in windows. The advantage of binary compiled 

applications over interpreted code is well-known and ultimately 

led us to try using the lower level languages. C was the obvious 

choice for its ubiquity in resources examples and portability in 

Linux.  

The choice of algorithms in the real time implementation 

allowed for direct conversion between the Matlab algorithm and 

the binary implementation. The idiomatic paradigms of C also 

make it much easier to optimize certain aspects of the program, 

such as calculating signal energy (adding and removing squared 

samples to an energy variable). The optimizations and the 

velocity of running binaries allowed for the port to directly work 

without losing samples over time. 

E. VAD 

An implementation of a VAD system was devised for the 

sake of testing the adaptation/cancellation in a single module 

scheme, as opposed to was had been done before. The basic idea 

consisted in performing the cross correlation between some x 

and y samples previously obtained, and determining the value of 

the peaks in the graph corresponding to instants where the baby 

sound is almost inaudible, which then constitutes the threshold 

for turning on the adaptation process. These thresholds would 

then be set “manually” in the algorithm so that each time the 

cross correlation reached such value the VAD would be 

triggered.   

In truth, the design of a VAD algorithm is very hard, since the 

complexity of the mathematical/signal processing considerations 

make the development of a fully-fledged VAD well above the 

scope of this project. It should also be noted that the sheer 

complexity of the already developed algorithms make the VDA 

implementation unsuitable for our live time applications (which 

are the ones VAD  is to be used on). There are little resources 

available for continuous light implementations of VAD systems. 

IV. RESULTS AND DISCUSSION 

A. Cancellation in offline mode with real signals 

When it comes to testing the algorithm with real signals 

acquired using the microphones, some degradation of the 

performance was noticeable. One serious problem encountered 

when acquiring real signals was that they were highly attenuated 

and distorted as well as low pass filtered, especially inside the 

box, as already mentioned. This posed some practical issues on 

properly assessing the filter’s efficiency. At first it was 

somehow challenging to perceive the differences between the 

interest sound the filter outputted (error signal) and the recorded 

signal, yet with the optimization of the system the results are 

much more palpable, being that now there is a perceived 

qualitative attenuation of the noise. 

Considering what has been explained concerning the filtering 

process, it is worth to notice that in practice, however, the filter 

can only approximate to the ideal solution, thus some noise will 

be constantly present in the noise-cancelled signal, though with 

acceptable attenuation. The system can only work as long as 

 ( ) is kept unchanged throughput the process; otherwise the 

adapted   is constantly deviating from the ideal solution and 

little or no noise is canceled at all. Note that in this work  ( ) 

was assumed to be constant during the periods where  ( ) is 

not zero and   is not adapting, because some conditioning 
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measures were taken, namely keeping the 

loudspeaker/microphone set-up in fixed positions. 

B. Optimal parameters 

Attending to Fig. 5 it can be concluded that the system works 

optimally with µ=0.1, seeing as these values corresponded to the 

greatest amount of noise cancellation. As µ approaches unity the 

amount of attenuation tends to zero for the white noise and 

slightly decreases for the Beethoven sample. 

 
Fig. 5. ERLE values versus µ ( range 0.1-1.0) with increments of 0.1. 

C. Noise cancellation Analysis 

In Fig. II4 and II5 are presented the converged  ( ) in 

offline mode, used to perform the noise attenuation stage with 

each music of the playlist. Note the similarity to the filter used 

in the simulation for modeling  ( ) in Fig.I2. This response is 

somewhat according to what could be expected regarding the 

effect of the box in the sound waves.  

In Fig. 6 and Table I the results of the conducted test battery 

of musics as noise vs the sound of a baby crying are shown. The 

results are unanimous in showing a clear attenuation further the 

natural one provided by the box. With an average 17dB 

attenuation (-17dB gain) between the filtered signal and the 

signal with the baby crying plus the noise. Qualitatively the 

baby can be heard crying much better in the filtered signal, in 

some cases (such as very strong white noise) the baby cannot be 

heard at all in the original signal, and can be heard very well as 

the main source of sound in the filtered signal, proving the 

effectiveness of the system. 

 
Fig. 6. ERLE final values obtained in offline mode for each of the twelve 

music clips in the playlist using parameters µ=0.1, lw=1000, Fs=10kHz and a 

duration of 40 seconds. 

 

 

 

 

Table 1. ERLE an BAC values of the graphic in Fig. 5 

Music Reference 

b(n)≠0 b(n)=0 

20log10(E/X) ERLE (Y/E) BAC (Y/X) 

acdc 63.16 22.53 44.81 

apocalyptica 55.20 10.33 46.19 

epocha 58.36 18.11 40.89 

hallowed 58.54 14.09 45.64 

hendrix 64.22 24.77 39.56 

iron 61.34 16.06 44.79 

moonspell 60.39 21.89 38.73 

overture 48.87 12.88 37.76 

kings of lion 57.34 16.95 40.62 

skunk 62.52 23.85 38.92 

teardrop 53.64 13.71 41.22 

wonderful 63.16 22.53 44.81 

Average 58.51 17.74 41.74 

 4.59 4.89 3.06 

 

D. Cancellation in Real Time mode 

As a fully functional system required the sound of interest 

inside the box to be audible in real time, the algorithm was 

adapted so as to allow for parallel acquisition and processing of 

the input signals. The real time adaptative filter in matlab 

converged to a solution somewhat similar to the one in offline 

mode, however, the effect of a lossy adaptation is evident the 

steady behavior of the filter, especially in the later samples. 

 
Fig. 7. Real time w: Note that the peak corresponds roughly to the distance 

between the microphones. 

V. CONCLUSION 

The real world technical problems associated with audio 

applications make the seemingly trivial algorithms of simulated 

work very complicated. The gratification when the said 

algorithm work in the real world far exceeds simulation as well. 

Our initial goals of 3dB attenuation were overcome, and the 

actual effectiveness of this system was well above what we 

thought we might get in the real world. Despite our best efforts 

the VAD detector didn’t work as expected, compromising the 

live time implementation. Given the right tools for handling 

audio this system could work very well and very fast indeed. 

APPENDIX 

Further images and code routines, can be found at 

http://paginas.fe.up.pt/~bio07040/, projects section, LIEBIII.  
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APPENDIX I: MATLAB SIMULATION 

In this phase NLMS algorithm was implemented using 

simulated signals and a model of the system to test its 

adaptation behavior and determine the optimal parameters as 

well as testing the influence of the nature of the signals 

employed. 

The two signals can be described by the following equations: 

  ( )   ( )   ( )                   (1) 

 

 ( )   ( )   ( )   ( )               (2) 

 

where  ( ) models the impulse response of the primary path, 

and  ( ) models some secondary path from the noise source to 

the reference microphone. Naturally, these functions are 

unknown and thus the algorithm must be independent of their 

values.   ( ) is the sound field output by the noise source, 

without any distortions due to distance, echo and reverberation 

phenomena. Note that  ( ) is a function that models the path all 

the way from speaker to error microphone, which includes 

delays due to propagation distance, reflections and the 

impedance to high frequencies provided by the box. Similarly, 

 ( ) models the distortion of the sound field from speaker to 

reference microphone, which is much less severe than that 

occurring in the primary path. For simulation purposes,  ( ) 

was modeled with three different functions: as a unity transfer 

function ( ( )     ), as a simple delay ( ( )     ), and as a 

train of delays in much the same way as P(n) was modeled in 

the simulation phase. This three functions were considered for 

 ( ) in order to assess the influence of this parameter in the 

outcome. Note that in the two last cases it was necessary to 

guarantee that the longest delayed pulse is not greater than the 

time propagation of sound in the primary path.  

The governing equations are the following: 

Error signal:  

 ( )   ( )    ( )   ( )   ( )   ( )   ( )   ( )  (3) 

 

Filter adaptation coefficients:         

 (   )   ( )   
 

 ( )   ( )     
 ( ) (       ) ( ) 

 

The acoustic impedance of the walls of the box posed a 

natural low pass filtering response to the incoming sound waves, 

thus preventing the noise high frequency contents from reaching 

the inside microphone and disturbing the crying sound.  

 

 An offline adaptive filtering application was developed in 

Matlab implementing the well-known NLSM algorithm for its 

good performance in general purpose noise cancelling. The 

signals used to simulate the inside microphone were a clip of a 

Mozart composition and a baby carrying sound. The 

corresponding waveforms are shown in Fig.I1. The outside 

microphone was simulated with white noise.  

 
Fig. I1. Signals used to simulated the sound captured by the inside 

microphone. 

 

Table I1. ERLE values of the final outputs obtained in each scenario 

( 1.0e+006). 

 Mozart Baby crying 

S1(n) 6.0556 5.8474 

S2(n) 6.0887 5.8302 

S3(n) 0.1290 -0.0986 

 

 The secondary path  ( ) was modeled with three different 

functions: 

  ( )    

  ( )    

  ( )                           

 
Fig. I2. Filters used to model the  ( ) (upper) and   ( ) (lower) in 

the simulation.  

 

The output obtained with the “Mozart” signal and using 

  ( ), along with the original signal,  is presented in Fig. II3 

below.  From this figure, it can be seen that the resemblance 

between the original crying signal and the output is strikingly 

visible, which shows that the filter managed to adapt very 

well over a reduced number of samples. Apart from some 

delay caused by propagation distance in the filters used to 

mode ( )and  ( )some high frequency attenuation, the 

result was fully satisfactory. The error signals can be seen to 

have converged over time and the ERLE values exhibited an 

increasing behaviour towards the final samples (see Figs. I4 

and I6).  
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Fig. I3. “Mozart” signal before (upper) and after (lower) noise 

cancellation with w(n). 

 

 
 

Fig. I4.  Error signals from the Matlab Simulation with “Mozart”, using 

µ=0.1, lw=4000.  

 
Fig. I5. ERLE values throughout the processing with w(n), using 

“Mozart” inside signal. 

 
 

Fig. I6.  Error signals from the Matlab Simulation with a baby crying 

cound, using µ=0.1, lw=4000. 

 

 
Fig. I7. ERLE values throughout the processing with w(n), using 

“Mozart” inside signal. 

 
Fig. I8. w(n) vectors of the simulations with either “Mozart” and baby 

crying signals (superimposed).  
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Note that the results in both cases were closely similar. The 

ERLE values seemed to be better for the case where   ( ) or 

  ( )were used, as would be expect. When the secondary path 

was modeled with   ( ), the results were not so good. Not only 

the error did not manage to adapt so well, as can be seen from 

the larger error, but also the ERLE vector assumed negative 

values, which is somewhat unexpected. As a matter of fact, it 

was not surprising that the result was worse for the case where 

we used   ( ), which introduces some instability in the 

convergence of  ( ), but still  the reason for such low ERLE 

values is not straightforward.  

Considering the  ( ) vectors in Fig. II8, the fact that for each 

case the filters resulting from both simulations are completely 

superimposed evidences the algorithm’s capability of adapting 

to the primary path impulse response regardless of the nature of 

the inside sound.  

 

The algorithm’s performance was also studied with different 

noise signals for the outside microphone, namely white noise 

and classical music and in both situations the outcome was a 

clean undistorted sound. It could be noted that the initial instants 

were still affected by some noise with decaying magnitude as 

the filter actively adapted to the incoming sample. 

The algorithm and values of the parameters used in the 

simulation can be consulted in website aforementioned. 
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APPENDIX II: SIMULATION WITH REAL-SIGNALS 

 II.1. Microphone Calibration 

Before acquiring the real signals for the simulation with real 

signals, the microphones were tested by capturing a live played 

signal from an electric guitar and varying their distance to the 

signal source. The acquired signals are presented in Fig. II1. 

Although the signal from the Philips microphone had a higher 

value of offset, an offset can be recognized for both 

microphones. In order to minimize the offset effect, the mean of 

each acquired signal was assessed and subtracted to the original 

one. Fig.II2 presents the signals after this normalization, 

evidencing that the signals from both microphones have the 

same amplitude and phase which is desirable for this work. 

 
Fig. II1.  Calibration signals captured by Philips microphone (red signal) and 

Sony microphone (blue signal). 

 

 

 

 
Fig.II 2.  Calibration signals captured by Sony microphone (blue) and Philips 

microphone (red)  normalized by mean. 

 
Fig. II3.  Converged  ( ) in offline mode. 

II.1. Microphone Calibration 
 

The  ( ) filters obtained in the real time mode for the playlist 

(in the same order) are presented in Figs. IIV3 and IV3 below. 

 

 

Figs. II4 and II5.  Resultant filter for each music of the playlist. The 

filters are presented in the same order specified in Table I. 
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APPENDIX D: REAL-TIME MODE 

 

The algorithm implemented in Mattlab previously referred to in the real time 

cancellation section can be described by the diagram presented in Fig. IV1. 

 

 
 

 

 

Fig. III1.  Flowchart of the real time mode. 

 


